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Abstract

Entropy generation due to laminar mixed convection from an isothermal rotating cylinder was calculated

numerically. The study was conducted for three cylinder radii and covered wide ranges of Reynolds number and
buoyancy parameter. Entropy generation increased as the Reynolds number and buoyancy parameter increased.
Entropy generation decreased as the cylinder radius increased. For the same combination of Reynolds number and
buoyancy parameter, entropy generation was mainly due to thermal e�ects at small cylinder radii and due to

viscous e�ects at large cylinder radii. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The optimal design criteria for thermal systems can

be achieved by minimizing entropy generation in the

systems. This problem has recently been the topic of

great interest in ®elds such as heat exchangers, energy

storage systems, and electronic cooling devices. Heat

transfer processes are accompanied by thermodynamic

irreversibility due to entropy generation. There exists a

direct proportionality between the irreversibility of the

process and the amount of useful work dissipated in

the process. Entropy generation was studied by many

investigators. Bejan [1] showed that the entropy gener-

ation for forced convective heat transfer is due to tem-

perature gradient and viscosity e�ect in the ¯uid. San

and Laven [2] investigated the irreversible entropy gen-

eration for combined heat and mass transfer in a two

dimensional channel. Hutchinson and Lyke [3] used a

lumped analysis to investigate entropy generation in

regenerative heat exchangers. Di�erent research on

local entropy generation in heat exchangers is available

in the literature [4±8].

Natural convection from a horizontal cylinder has

been investigated extensively. Kuehn and Goldstein [9]

numerically solved the complete Navier±Stokes and

energy equation for laminar natural convection about

a horizontal isothermal cylinder for 1 R RaD R 107

using a ®nite di�erence technique. Wang et al. [10]

investigated the laminar natural convection ¯ow from

a heated horizontal cylinder using the spline fractional

step method. Ghaddar and Thiele [11] numerically

solved natural convection over a rotating cylindrical

heat source in a rectangular enclosure, using a ®nite el-

ement method. Shimada et al. [12] experimentally

investigated the heat transfer from a rotating cylinder

with and without cross ¯ow. Badr [13] theoretically

solved laminar mixed convection from a horizontal

cylinder in cross stream. Badr et al. [14] numerically

solved the steady and unsteady ¯ow past a rotating cir-

cular cylinder at low Reynolds numbers. Ahmad [15]

numerically solved steady state forced convection

around a horizontal cylinder at moderate Reynolds

numbers, ranging from 100 to 500. In the present work
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the complete Navier±Stokes and energy equations are
solved using ®nite di�erence technique to describe

laminar natural convection over a heated rotating
cylinder. The overall entropy generation rates around
a rotating cylinder are calculated for di�erent values of
Reynolds number, buoyancy parameter and cylinder

radius.

2. Mathematical analysis

Fig. 1 shows a schematic of the cylinder and the

main physical parameters. The equations for steady
state two-dimensional laminar mixed convection from
a horizontal rotating cylinder are given by [16]:
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Nomenclature

D cylinder diameter
Gr Grashof number based on radius,

0gbr 3o(ToÿT1)/n 2

GrD Grashof number based on diameter,
0gbD 3(ToÿT1)/n 2

g acceleration due to gravity

h average convection heat transfer coe�cient
h local convection heat transfer coe�cient
k thermal conductivity

M number of grid points in the tangential
direction

N number of points in the radial direction
NuD local Nusselt number based on diameter,

0hD/k
NuD average Nusselt number,0hD/k
p pressure

p � normalized pressure
R dimensionless radial distance,0r/ro
r radial direction in computational domain

ro radius of the cylinder (m)
R1 dimensionless far away boundary distance,

0r1/ro
r1 faraway boundary distance
RaD Rayleigh number based on diameter,

0gbD 3(ToÿT1)/na
Re Reynolds number based on radius,0r 2oO/n
ReD Reynolds number based on diameter,

0roOD/n
Sc conduction contribution to dimensionless

total entropy generation
S1gen dimensionless local entropy generation
s1gen entropy generation per unit volume (W/m3

K)

St dimensionless total entropy generation
Sv viscous contribution to dimensionless total

entropy generation

T temperature
U dimensionless radial velocity,0u/roO
u radial velocity

V dimensionless tangential velocity,0v/roO
v tangential velocity

Greek symbols
a thermal di�usivity

b coe�cient of thermal expansion
E relative error
Z radial direction in computational domain

y tangential direction in physical domain
k buoyancy parameter,0GrD/Re

2
D

m dynamic viscosity

n kinematics viscosity
x tangential direction in computational

domain
r density

f dimensionless temperature, 0(TÿT1)/
(ToÿT1)

c dimensional stream function

c � dimensionless stream function,0c/roO
2

O rotational speed
o dimensional vorticity

o � dimensionless vorticity,0o/O

Subscripts
1 ambient value
o value on cylinder wall
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Eqs. (1)±(4) are subject to the following boundary con-
ditions:

1. On the cylinder surface, r=ro: u= 0, v=Oro, and

T=To.
2. Far away from the cylinder, r 41: u=v = 0 and

T=T1.

The average Nusselt number based on diameter (NuD)
is calculated as:

NuD � 1

2p
D

k

�2p
0

h�y� dy

� ÿ D

2p�To ÿ T1�
�2p
0

@T�ro,y�
@r

dy: �5�

The following non-dimensional groups are introduced:

R � r

ro

, U � u

Oro

, V � v

Oro

, f � Tÿ T1
To ÿ T1

,

P � pÿ p1
0:5r�Oro�2

:

Using the stream function±vorticity formulation, the
non-dimensional form of Eqs. (1)±(4) is given by:
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where

U � 1

R

@c
@y

, V � ÿ @c
@R
:

The new non-dimensional boundary conditions for
Eqs. (6)±(8) are given by:

1. On the cylinder surface, R = 1: @c/@y=0, @c/
@R= 1, o=@2c/@R 2, and f=1.

2. Faraway from the cylinder, R41: @c/@y=@c/
@R=o=f=0.

In order to accurately resolve the boundary layer
around a cylinder, a grid with small radial spacing is

Fig. 2. Schematic of the physical (left) and computational (right) grids.

Fig. 1. Schematic of the cylinder and the main physical par-

ameters.
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required. It is not practical to use this small spacing as
we move to the far away boundary. Thus a stretched

grid in the radial direction is used [16]. This will result
in unequally spaced nodes and would require the use
of more complicated and/or less accurate ®nite di�er-

ence formulas. To overcome this problem, the
unequally spaced grid in the physical domain (R, y ) is
transformed into an equally spaced grid in the compu-

tational domain (x, Z ) [17], see Fig. 2. The two
domains are related as follows:

R � epx, y � pZ

Eqs. (6)±(8) along with the corresponding boundary

conditions need to be transformed into the compu-
tational domain. In the new computational domain,
the current problem is given by:
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where

E � pepx:

The transformed boundary conditions are given by:

1. On the cylinder surface, x=0: @c/@Z=0, @c/@x=ÿp,
o=(1/p 2)@2c/@x 2, and f=1.

2. Faraway from the cylinder, x 41: @c/@Z=
@c/@x=o=f=0.

The elliptic system of PDEs given by Eqs. (9)±(11)
along with the corresponding boundary conditions was
discretized using the ®nite di�erence method. The
resulting system of algebraic equations was solved

using an explicit hybrid scheme [15]. Such a method
proved to be numerically stable for convective-
di�usion problems. The ®nite di�erence form of the

equations was checked for consistency with the original
PDEs [16]. The iterative solution procedure was carried
out until the error in all solution variables (c, o, f )

became less than a prede®ned error level (E ). Other
prede®ned parameters needed for the solution method
included the placement of the far away boundary (R1)
and the number of grid points in both radial and tan-

gential directions, N and M, respectively. Extensive
testing was carried out in order to determine the e�ect
of each of these parameters on the solution. This was

done to insure that the solution obtained was indepen-
dent of and not tainted by the prede®ned value of each
of these parameters. The testing included varying the

value of E from 10ÿ3 to 10ÿ6, R1 from 10 to 30, N
from 20 to 120, and M from 24 to 144. The results
reported herein are based on the following combi-

nation: N= 100, M = 100, R1=20, and E=10ÿ5.
The ®rst task in any numerical work is to validate

Fig. 3. Variation of the average Nusselt number with Rayleigh number. The case of pure natural convection (ReD=0).
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the codes ability to accurately reproduce published

results. The case of pure natural convection, ReD=0,

was used as an initial test of the code. Fig. 3 shows the

average Nusselt number (NuD) at di�erent values of

Rayleigh number (RaD) as reported by Kuehn and

Goldstein [9], Wang et al. [10], and the results of the

current code. The current results show excellent agree-

ment with the published data. Only one case could be
located in the open literature for a low Reynolds num-

ber that is within the range of the current study, the

case of ReD=300 and k=1.88 [12]. Fig. 4 shows a

comparison between the experimental local Nusselt

number (NuD) as reported by Shimada et al. [12] and

the numerical predictions of the current code for the

case of ReD=300 and k=1.88. There is a slight shift

in the tangential direction between the experimental

data and the numerical prediction but the overall be-

havior and levels are comparable. One cause for the
di�erence is that the experimental data shown in ®gure

4 read o� the ®gure in the paper by Shimada et al.

[12]. Thus, some error is expected due to the resolution

of the ®gure. Another cause could be that the exper-

imental data reported were measured using optical

techniques, a Mach±Zehnder interferometer, which

does not have a very ®ne resolution especially near the

surface of the cylinder. The procedure used in this

code is based on the experience gained in writing

another, somewhat more complicated, code that esti-
mates the Nusselt number due to mixed convection

from a stationary cylinder in cross ¯ow at di�erent

angles of attack. The results of that code showed excel-

lent agreement between published data and numerical

predictions over a wide range of Reynolds number,

buoyancy parameter, and incoming ¯ow angle of
attack [17]. Thus the authors have con®dence in the
code's ability to accurately predict the current ¯ow

®eld.
The non-dimensional form of the local entropy gen-

eration in 2-D cylindrical coordinates is given by [18]:
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where

S1gen � s1genr
2
o

k
:

The total entropy generation is calculated by integrat-
ing Eq. (12) over the entire domain as follows:

St �
�2p
0

�R1
1

S1gen�R,y�R dR dy: �13�

Fig. 4. Variation of the local Nusselt number for the case of ReD=200 and k=1.88.
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The entropy equation consists of two parts, the ®rst is
due to conduction while the second is due to viscous

dissipation. Entropy generation is calculated after the
numerical solution for the velocity and temperature
pro®les has converged. Thus, Eqs. (12) and (13) need

not be written in the stream function±vorticity form
nor transformed into the computational domain.

3. Results

The velocity and temperature pro®les can be solved

analytically for the case of k=0. For this case the
radial velocity vanishes (u = 0) and the problem
becomes independent of the tangential direction (y ).

The equation of local entropy generation, Eq. (12), is
simpli®ed to:

S1gen � 4mr2oO
2

kT1

�
1

R4

�
�14�

The total entropy generation over the entire domain is

integrated analytically to get:

St � 0:3332916
mn2Re2

kT1r2o
�15�

Fig. 5 shows that the total entropy generation

increases with both Reynolds number and buoyancy
parameter. Higher values of ReD and/or k result in
smaller viscous and thermal boundary layers. This

Fig. 5. Variation of the total entropy generation due to buoyancy parameter at di�erent values of Reynolds number and cylinder

radius.
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translates to higher velocity and temperature gradients
and thus, higher rates of entropy generation, Eq. (12).

The sharpest rise in the rate of entropy generation
occurred at low values of k. The increase in entropy
generation with k continued up to a certain value of k
then became constant. The value of k at which the
entropy generation became constant depends on ReD
and ro. This is an important issue from a design point

of view. Higher values of k will result in increased heat
transfer from the cylinder, a desired e�ect in heat
exchangers, but usually at the expense of higher

entropy generation, i.e. lower thermodynamic ef-

®ciency. Fig. 5 shows that the use of very high values
of k results in minimal increase in entropy generation.

Thus, higher heat transfer rates can be achieved with-
out the penalty of lower e�ciency. Also from Fig. 5,
we conclude that the total entropy generation

decreases with increasing cylinder radius. Increasing
the cylinder radius results in smaller velocity and tem-
perature gradients, for the same value of Reynolds

number and buoyancy parameter. Thus, the rate of
entropy generation will decrease, Eq. (12).
Fig. 6 shows the change in the contribution of the

conduction (Sc) and viscous (Sv) parts to the total

Fig. 6. Conduction, viscous, and total entropy generation at di�erent combinations of Reynolds number, buoyancy parameter, and

cylinder radius.
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entropy generation (St) as a function of Reynolds
number, buoyancy parameter, and cylinder radius.
Knowing which e�ect is dominant in the total entropy

generation is an important issue when trying to devise
methods of reducing entropy in order to enhance the
thermodynamic e�ciencies of thermal systems. The

main conclusions of Fig. 6 are:
1. Entropy generation due to conduction e�ect is

dominant at small cylinder radius (ro=0.001 m),

irrespective of the Reynolds number and buoyancy
parameter.

2. Entropy generation due to conduction e�ect is

dominant at medium cylinder radius (ro=0.01 m),
except at the combination of low Reynolds number
and buoyancy parameter, where the viscous contri-

bution becomes dominant.
3. Entropy generation due to viscous e�ect is domi-

nant at large cylinder radius (ro=0.1 m), except at

Fig. 6 (continued)

Fig. 7. Variation of the local entropy generation on the cylinder surface due to buoyancy parameter for the case of ReD=200 and

ro=0.001 m.
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the combination of high Reynolds number and
buoyancy parameter, where the conduction contri-

bution becomes dominant.

The variation of the local entropy generation around
the cylinder as a function of buoyancy parameter is

shown in Fig. 7 for the case of ReD=200 and
ro=0.001 m. This is a representative case for all other
cases studied in this research. The only di�erence

between the di�erent cases was the relative reduction
in the entropy generation in the plume region. Fig. 7
shows that as the buoyancy parameter increases, the

local entropy generation around the cylinder becomes
less uniform. Local entropy generation is lowest in the
plume region where the velocity and temperature

gradients are lowest. Thus, the locus of the minimum
local entropy generation in Fig. 7 shows the change in
the location of the plume as a function of the buoy-
ancy parameter. As the buoyancy parameter increases,

the ¯ow approaches the case of pure natural convec-
tion. Indeed, at k=10, the plume is around y=2108.

4. Conclusions

Entropy generation due to natural convection from
a rotating cylinder was calculated numerically. The
results show that the total entropy generation increases
with the increase of both Reynolds number and buoy-

ancy parameter but decreases as the cylinder radius
increases. The change in total entropy generation with
buoyancy parameter reaches an asymptotic value

beyond which entropy generation does not increase
with further increases in the buoyancy parameter. The
relative contribution of the two parts of entropy gener-

ation was mainly a function of the cylinder radius and,
to a lesser extent, a function of Reynolds number and
buoyancy parameter. These results are an important

®rst step in the quest to devise methods for the re-
duction of entropy generation in order to enhance the
thermodynamic e�ciency of thermal systems.
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